1、函数与方程思想
函数思想是指使用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系使用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,使用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想实行函数与方程间的相互转化。
2、数形结合思想
中学数学研究的对象可分为两绝大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方",所以建议同学们在解答数学题时,能画图的尽量画出图形,以利于准确地理解题意、快速地解决问题。
3、特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这个点,同学们能够直接确定选择题中的准确选项。不但如此,用这种思想方法去探求主观题的求解策略,也同样有用。
1、审题要慢,答题要快
有些考生只知道一味求快,往往题意未清,便匆忙动笔,结果误入歧途,即所谓欲速则不达,看错一个字可能会遗憾终生,所以审题一定要慢,有了这个“慢”,才能形成完整的合理的解题策略,才有答题的“快”。
2、运算要准,胆子要大
高考没有足够的时间让你反复验算,更不容你一再地变换解题方法,往往是拿到一个题目,凭感觉选定一种方法就动手做,这时除了你的每一步运算务求正确外,还要求把你当时的解法坚持到底,也许你选择的不是最好的方法,但如回头重来将会花费更多的时间,当然坚持到底并不意味着钻牛角尖,一旦发现自己走进死胡同,还是要立刻迷途知返。
微信扫描二维码关注
一、一般四边形是指什么一般四边形是指矩形。矩形是至少有三个内角都是直角的四边形。矩形是一种特殊的平行四边形,正方形是特殊的矩形。矩形也叫长方形。由于矩形是特殊的平行四边形,故包含平行四边形的性质。
一、长方体相关定义(1)长方体的面围成封闭几何体的平面多边形称为多面体的面。长方体有6个面。其中每个面都是长方形(有可能有2个相对的面是正方形),有3对相对的面。相对的面形状相同、面积相等。
一、数学中有哪些数1、质数与合数质数,又名素数,是指只能被1和自身整除的数。如2,3, 5, 7, 11……
一、高考数学偷分技巧调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解
一、一亩等于多少平方米在平方米换算成亩的时候,有一个换算方法可以遵循,就是平方米的数字与它的一半相加,然后再将小数点左移三位就是亩的大小了。
一、正态分布的期望和方差数学期望反映随机变量平均取值的大小。方差为各个数据与平均数之差的平方的和的平均数,即
一、拐点怎么求若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
一、二元一次方程的解使二元一次方程两边的值相等的两个未知数的一组值,叫做二元一次方程的解。
一、什么是极坐标方程实际上,极坐标与直角坐标一样,都是为了表示点在空间中的位置而引入的参照系。